Search results for "Crystal plasticity"
showing 6 items of 6 documents
Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel
2020
Understanding the local strain enhancement and lattice distortion resulting from different microstructure features in metal alloys is crucial in many engineering processes. The development of heterogeneous strain not only plays an important role in the work hardening of the material but also in other processes such as recrystallization and damage inheritance and fracture. Isolating the contribution of precipitates to the development of heterogeneous strain can be challenging due to the presence of grain boundaries or other microstructure features that might cause ambiguous interpretation. In this work a statistical analysis of local strains measured by electron back scatter diffraction and …
A computational framework for microstructural modelling of polycrystalline materials with damage and failure
2017
In the present thesis, a computational framework for the analysis of the deformation and damage phenomena occurring at the scale of the constituent grains of polycrystalline materials is presented. The research falls within the area of Computational Micro-mechanics that has been attracting remarkable technological interest due to the capability of explaining the link between the micro-structural details of heterogenous materials and their macroscopic response, and the possibility of fine-tuning the macroscopic properties of engineered components through the manipulation of their micro-structure. However, despite the significant developments in the field of materials characterisation and the…
A grain boundary formulation for crystal plasticity
2016
Abstract A three-dimensional grain-boundary formulation for small strains crystal plasticity is presented for the first time. The method is developed and implemented for both single grains and polycrystalline aggregates and it is based on the use of a suitable set of boundary integral equations for modelling the individual grains, which are represented as anisotropic elasto-plastic domains. In the boundary integral framework, crystal plasticity is modelled resorting to an initial strains approach and specific aspects, related to the integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations, are discussed and suitably addressed for the first…
Elucidating the Effect of Bimodal Grain Size Distribution on Plasticity and Fracture Behavior of Polycrystalline Materials
2020
The refinement of grains in a polycrystalline material leads to an increase in strength but as a counterpart to a decrease in elongation to fracture. Different routes are proposed in the literature to try to overpass this strength-ductility dilemma, based on the combination of grains with highly contrasted sizes. In the simplest concept, coarse grains are used to provide relaxation locations for the highly stressed fine grains. In this work, a model bimodal polycrystalline system with a single coarse grain embedded in a matrix of fine grains is considered. Numerical full-field micro-mechanical analyses are performed to characterize the impact of this coarse grain on the stress-strain const…
A Novel Numerical Formulation for Crystal Plasticity
2016
Crystal plasticity plays a crucial role in the mechanics of polycrystalline materials and it is commonly modeled within the framework of the crystal plasticity finite element method (CPFEM). In this work, an alternative formulation for small strains crystal plasticity is presented. The method is based on a boundary integral formulation for polycrystalline problems and plasticity is addressed using an initial strains approach. Voronoi-type micro-morphologies are considered in the polycrystalline case. A general grain-boundary incremental/iterative algorithm, embedding the flow and hardening rules for crystal plasticity, is developed. The key feature of the method is the expression of the mic…
Boundary Element Crystal Plasticity Method
2017
A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and har…